首页 > 技术

人手一个的AI是如何诞生的

2024-07-23 10:45:43      西盟科技资讯   


  2023年是AI大语言模型爆发的一年,以OpenAI推出的GPT大模型为起始,整个行业开始从“推理式AI”向“生成式AI”迈进。据Market Data Forecast预测,全球AI市场规模将从2023年的1502亿美元增长到2030年的13452亿美元,年复合增长率高达36.8%。

  在此背景下,国内如百度文心一言、科大讯飞星火、阿里通义千问等各种国产垂直大模型相继问世,深刻改变了我们的办公与生活。然而,大模型的培养与训练自然离不开大量的数据投喂。简而言之,数据量的多少决定了大模型参数的大小,也就决定了大模型的能力。同时,处理这些数据也需要大量的算力,那么毫无疑问,就需要与之相对应的硬件规模。

  所以现如今,这些能够处理非常复杂工作的,例如可以形成符合你要求的特定主题的图片、视频,甚至还能生成音频和配乐的大模型,基本都跑在云端服务器上。而投喂给它们的训练数据,也基本上都是用户签署过“使用协议”,合法的,能够被摆在“台面上”使用的数据,这也就导致了目前AI答案的标准化和空洞宽泛,无法真正意义上匹配到每一个消费者自身的使用场景,简而言之就是缺乏个性化和深入性。

  在这样的情况下,一些参数量相对较小但是可以处理一些相对简单、更个性化、更私密的任务的大模型,就成为了AI未来的发展方向之一。当然更重要的一点是,这种体量的大模型可以实现本地化部署,用户可以利用自己的数据进行定向培养,在终端侧使用。

  NAS作为AI硬件载体的潜力

  想要寻找现如今消费者日常生活中可以容纳大模型生存的硬件形态,NAS就成为了为数不多兼具“数据和算力”的存在。NAS作为消费者的私人数据汇集地,同时拥有一定的计算和网络能力,数据也更加安全,是搭载本地化AI智能助手非常好的阵地之一。

  但现实情况却是,即便放在物质充裕的当下,能够拥有私人的NAS(Network Attached Storage,网络附属存储),对于普通人来说似乎是件遥不可及的事情。不仅是因为其硬件成本相对高昂,同时其使用前的配置操作相对繁琐,对于没有相关专业知识的普通人来说,传统NAS天生就自带入门门槛。

  有困难,就会有解决困难的人。聚焦数码产品评测十六年的鲁大师发现,“PC端的用户开机时间变短了,从最初的每天开机,到半个月开一次,甚至有时一个月才开一次机,开机时间缩短得非常厉害,但这些电脑并没有被淘汰,依然在用户的家里”。外加目前PC整个行业下滑趋势明显,尤其是疫情后的市场透支与恢复缓慢。“怎么才能让闲置的PC机变得有价值?”成为了一直萦绕在鲁大师CEO田野脑袋中的问题。

  此时一个想法迅速占领了田野的大脑:他不仅要让PC成为和个人NAS一样的“存储工具”,同时还能根据个人的需求让其成为自己的AI助手。

  在这样的天马行空的思考下,鲁大师 AiNAS由此诞生。

  其实简单来说,本地NAS就是一台将传统电脑去掉显示器等设备,只保留硬盘以及联网能力的小型服务器。那么自然,为家用电脑安装NAS系统,家用电脑就可以变成NAS,这样用户就无需再花高价额外购买NAS的硬件。这就是鲁大师 AiNAS彻底解决“NAS贵”的方案,通过抛弃NAS硬件的生产,直接利用用户手边的闲置电脑实现硬件层面的“零成本”。

  针对NAS使用“难”的问题,鲁大师将传统NAS在使用中涉及到的“异常复杂的产品参数和配置选项”全部简化,用户只需要一键安装客户端,即可完成部署。

  由此,鲁大师AiNAS轻松帮助用户构建起了私密文件存储的“必然领地”。同时,田野表示,其实鲁大师并不参与用户任何资料的存储,其角色更像是一个类似中国移动这样的中转商,通过其提供的网络路径可以远程查看自己存储的东西,相当于把虚拟资产(文件、照片等)放在自己的家中闲置电脑。

  如此,用户即拥有了安全性更高的数据存储,有拥有了能够提供相当算力的硬件,前文中所提到的“部署本地化私人AI大模型”的设想,顺理成章地成为了可能。

  创造每个人自己的AI时代

  对于前文中提到的AI本地化部署的设想,想要付诸实现,最重要的事情是AI和私有化的数据进行拟合,从而发挥更“个性化”的价值,最终实现大家大家理想中的个人智能助理或家庭智能助理。鲁大师 AiNAS则是通过其内置的“智能助理”功能,率先开启了这方面的尝试。

  具体来看,当得到用户的授权之后,鲁大师AiNAS内置的“智能助理”就会开始对已经存储的资料进行全盘的扫描、阅读、理解、分析、总结、归档,最终实现资料的自动分类、去重、检索。然后以GPT大模型常见的对话形式,解决用户提出的诸如一键查询、一键总结摘要等生成式AI能够处理的相关需求。

  相对于大模型,这种本地AI因为个人电脑性能有限不可能承载那么大的数据,只能算是个小模型,需求也是千人千面。但是,单就个人具象化的需求,如果有足够的数据,这类本地AI实现的价值会远高于公有AI上获取的内容。

  目前鲁大师在本地AI的训练上选择的是“语言”,也就是通过语言指令,让NAS上存储的资料进行分类、提炼,包括总结PPT等,这套方案的优势是其算力需求90%的电脑都可以胜任,只是速度会有一些差异。对于选择语言这个细分领域的原因,田野的想法就是让所有人以最快的速度用上本地AI,未来随着用户数据量的增加,相信还会有更多个人AI的细分领域出现。

  鲁大师AiNAS的商业潜力

  除了带给用户个人的高价值,用户训练的AI模型还具有极大的商业潜力。在未来,或许鲁大师AiNAS用户可以共享或交易自己训练的AI模型,形成新的商业模式。例如,一个用户可能训练了一个擅长财务分析的AI助手,另一个用户可能需要这个助手来帮助管理投资组合。这种交易不仅可以为模型的创建者带来收益,还可以加速AI技术的普及和应用,形成一个互利共赢的生态系统。

  AI助手的潜力不仅限于个人使用,还可以扩展到各个行业。教育领域,教师可以使用AI助手个性化教学方案,根据学生的学习情况提供定制化辅导。医疗领域,医生可以利用AI助手快速分析大量病历数据,提供更加精准的诊断和治疗方案。企业管理中,AI助手可以帮助管理者处理繁琐的日常事务,提高工作效率。这些多领域的应用将进一步扩大鲁大师AiNAS的市场空间,带来更广泛的商业机会。

相关阅读